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ABSTRACT
In applications such as virtual and augmented reality, a plausible
and coherent audio-visual reproduction can be achieved by deeply
understanding the reference scene acoustics. This requires knowl-
edge of the scene geometry and related materials. In this paper, we
present an audio-visual approach for acoustic scene understanding.
We propose a novel material recognition algorithm, that exploits
information carried by acoustic signals. The acoustic absorption
coefficients are selected as features. The training dataset was con-
structed by combining information available in the literature, and
additional labeled data that we recorded in a small room having
short reverberation time (RT60). Classic machine learning methods
are used to validate the model, by employing data recorded in five
rooms, having different sizes and RT60s. The estimated materials
are utilized to label room boundaries, reconstructed by a vision-
based method. Results show 89% and 80 % agreement between the
estimated and reference room volumes and materials, respectively.
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1 INTRODUCTION
Humans rely on understanding the audio-visual characteristics of
the environments to interact with the world [53]. In most cases,
inputs to the human sensing system are paired audio and video
signals [50]. Therefore, machines should be providedwith capability
of analyzing audio-visual scenes. This would allow them to emulate
the human perception of the world, that is the benchmark for many
of the current artificial intelligence technologies. This is important
for different areas of application. For instance, it can be exploited
by robots to autonomously carry out tasks [24]. Virtual reality (VR)
and augmented reality (AR) are currently two major topics in the
audio-visual research [5, 7, 36]. Several VR software development
kits (SDKs) are freely available to be used by researchers. Classically,
they mainly focused on the visual experience [17, 52]. However,
recently, some toolkits have been extended with the inclusion of
spatial audio tools [19, 39]. Models that describe both geometry and
materials composing the environments are thus of great interest for
VR and AR, since they allow to approximate real room acoustics [21,
26, 43]. Studies demonstrated that high-quality sound reproductions
improve the perceived similarity to reference environments [8, 44].

3D room boundary estimation has been an important research
topic for practical applications. Computer vision techniques using
visual sensors have played a major role in geometry reconstruction.
Recovering geometric information from a single perspective photo-
graph or 360 image relies on geometrical cues such as lines and tex-
ture [51, 56, 57]. 3D reconstruction from stereo or multiple images
is widely used for general scene reconstruction [45, 46]. Kinect-like
Red Green Blue Depth (RGBD) sensors also provide good depth
information for an indoor scene estimation [9, 10]. However, vision
sensors fail for transparent, reflective or featureless uniform sur-
faces which often arise in common indoor scenes. Several methods
were proposed in the audio signal processing community to localize
the room boundaries [1, 14, 41], and detect small objects near the
listening position [42]. These are of great interest, especially in
those conditions where vision sensors fail. A few studies combined
audio and visual sensors to reconstruct 3D geometry such as sonar
+ camera [37], Kinect + ultrasonic sensor [58], acoustic echoes +
single photo [23], and acoustic echoes + 360 photo [27] .

During the last decade, several vision-based approaches were pro-
posed to tackle the problem of identifying surface materials. In [31],
Bayesian generative models were proposed to exploit features such
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as color and micro-texture. Kernel descriptors were then utilized
in [22], together with a Nearest Neighbor (NN)-based approach.
Later, accuracy was improved by employing convolutional neural
networks [4]. These were also employed in [25], where multi-class
classification was proposed to identify both the object type and at-
tributes. However, performance provided by all the methods above
was not of high-quality, particularly, when cross-dataset scenarios
where analyzed. As it happens for humans, vision-based features
are not strong enough to accurately classify surface materials by
themselves. Recently, approaches have been proposed trying to
exploit acoustic features. In [32], a robotic finger was built to emu-
late the action of “knocking” on objects. Although the experiments
provided good results, this approach is limited by the availability
of dynamic robots. Later, in [34], it was proposed to analyze the
acoustic characteristics of the reflective surfaces at specific sound
frequencies. However, it was suggested to use different frequencies
depending on the tested material, thus making it not generalizable.

In this paper, we propose an audio-visual method to localize the
room boundaries and classify them in terms of their material. A
block diagram representing the proposed method is depicted in
Figure 1. Three are the main novelties:

• Amethod to extract acoustic reflector absorption coefficients
from recorded spatial room impulse responses (RIR);

• A method for acoustic reflector material classification;
• A combination of the proposed material recognition method
with a vision-based off-the-shelf room boundary estimator,
to associate room geometry and materials.

The rest of the paper is organized as follows: Section 2 discusses
the theoretical concepts behind the proposed approach; Section 3
describes the vision-based method proposed to reconstruct the
room boundaries; Section 4 presents the novel methods to classify
the material of acoustic reflectors; in Section 5 experiments and
results are discussed; Section 6 draws the overall conclusion.

2 THEORETICAL BACKGROUND
The material recognition method that we propose is based on de-
termining the material acoustic absorption coefficients, given RIRs.
In this section, we describe the theory that is behind our approach.

2.1 Room Impulse Response
A sound propagating within a reverberant environment is observed,
at the listening position, as filtered version of the produced sound
[29]. With n being the discrete time domain variable, and sj (n) the
sound produced at the j-th source, we can write the signal recorded
by the i-th microphone as:

s ′i (n) = ri, j (n) ∗ sj (n) + ai, j (n), (1)

where “∗” denotes convolution, and ai, j (n) is the additive Gaussian
noise. ri, j (n), by acting as a filter, shapes the received sound, and it
is widely known as RIR [29].

A RIR is an acoustic signal, carrying information about the en-
vironment in which it is recorded. It is generallt considered as
being composed of three elements [29]: the direct sound; the early
reflections; and the late diffuse reverberation. From this classical
decomposition, the RIR from source j to sensor i can be defined
as superimposition of bursts, delayed by nk,i, j samples, with k
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Figure 1: The proposed audio-visual method to reconstruct
the room boundaries and determining the relatedmaterials.
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Figure 2: A graphical representation of a RIR, with the three
components highlighted by different colors.

enumerating the reflections:

ri, j (n) =

Tm∑
k=0

hk,i, j (n − nk,i, j ) + l(n), (2)

where h0,i, j (n) represents the direct sound, hk,i, j (n) the discrete
early reflections, and l(n) is the late reverberation modeled as expo-
nentially decaying Gaussian noise; Tm is the k-th peak correspond-
ing to the last reflection before the mixing time. A graphical repre-
sentation of a RIR is depicted in Figure 2, where the red bursts (i.e.
the early reflections hk,i, j (n)) are different acoustic paths between
source j and microphone i , within the recording environment.

2.2 Acoustic Absorption Coefficient
In general, when a sound, during its propagation, encounters ob-
stacles, i.e. acoustic reflectors, several physical phenomena may
occur, such as scattering, refraction, diffraction, evanescent waves,
etc [29]. However, here, we assume the specular component of the
reflection to be dominant, as drawn in Figure 3.

The sound reflection factor, R, gives the ratio of the specularly
reflected and incident sound pressure, i.e. pr and pi respectively,
as R = pr /pi [13]. By following the complex nature of the sound
propagation, R incorporates both magnitude and phase information
about the reflection. The absorption coefficient is defined as ratio of
the absorbed and incident energy, and it can be formulated as [13]:

α = 1 − |R |2, (3)

where |R | is the absolute value operator. Since α is frequency depen-
dent, we define αb as the absorption coefficient referring to the b-th
frequency octave band. In this paper, we consider the six octave
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Figure 3: A schematic drawing of the physical behavior of
sound impinging on an acoustic reflector. Loudspeaker and
microphone are shown as icons, pi is the incident sound
wave, pr the reflected one, pt is the transmitted/absorbed
sound, u represents the normal vector to the reflective sur-
face, and θ is the angle of incidence.

bands between 125Hz and 4 kHz. These are the frequencies that
are mostly analyzed in the literature in terms of reflector material
absorption coefficients [13, 55].

3 ROOM BOUNDARY RECONSTRUCTION
The room boundaries are estimated by using off-the-shelf 360◦
cameras. Two spherical panorama images captured at two different
heights are used to produce a room layout by stereo matching.
Ceiling, floor and wall regions are detected using convolutional
neural network trained for semantic segmentation (SegNet) [2]. For
those regions, shoe-box like room boundaries aligned to the main
axes are reconstructed by depth estimation.

3.1 Boundary Region Recognition
To recover 3D room boundary information, the scene is captured
as a vertical stereo image pair by Theta S cameras by Ricoh1, which
provides well-aligned seamless stitching with minimal distortion
in mapping to the Spherical coordinates. Images acquired from
two fish-eye lenses are stitched into an equirectangular projection
image as shown in Figure 4 (a). To extract room boundary regions, a
semantic segmentation of the scene is performed with SegNet [2], a
deep fully convolutional neural network architecture employing an
encoder-decoder architecture with the first 13 convolutional layers
of VGG16 [47]. Per-pixel class probabilities are the final output
of the system after a multi-class soft-max classifier is applied to
the decoder’s final output as shown in Figure 4 (b). The captured
spherical panorama image is projected onto a unit cube by the
cubic projection [25] to provide six perspective images of the scene,
because the SegNet works with a model trained on the SUN RGB-D
indoor scenes dataset [49].

3.2 Depth Estimation
3D geometry of the room boundary is reconstructed using dense
stereo matching with spherical stereo geometry [25]. Depth of the
scene is calculated by triangulation from the estimated disparity
and baseline distance between two camera positions. Disparity
estimation can be carried out along the column lines in the vertical
stereo image pair. Figure 4 (c) shows the disparity map estimated
from Figure 4 (a). All depth points in the regions labelled as ceiling,
floor and wall in Figure 4 (b) are projected to the 3D space and

1Ricoh Theta, https://theta360.com/en/

Figure 4: Room boundary estimation system.

form a 3D point cloud. The volume of the cuboid is decided by the
3D point occupancy in the cluster using least squares optimisation
[30]. In order to eliminate outliers from depth estimation in the
point cloud, 10% of the farthest points from the mean of each plane
cluster are excluded in the boundary estimation.

4 MATERIAL RECOGNITION
Once the room boundaries are determined, it is important to es-
timate also their acoustic properties, to aid targeted applications,
such as VR and AR. In this paper, we analyze large planar reflectors.
Therefore, the acoustic properties depend mainly on the type of ma-
terial composing them. We formulate this problem as classification,
where the classes represent different materials.

The acoustic method for material classification utilizes the acous-
tic reflector absorption coefficients as features, evaluated in octave
bands [29]. In the literature, absorption coefficients are typically
measured within controlled environments, by employing experi-
mental tools, such as reflective tubes [13]. However, here, since we
use recorded RIRs, we do not aim to accurately estimate the absorp-
tion coefficients of the tested material directly. Instead, we aim to
estimate them accurately enough to match with the ideal absorption
coefficient values of the sample material measured in controlled
environments [13, 55]. To do so, we take into account loudspeaker
and microphone directivity, to compensate for the signal lost [35].
Furthermore, the angle of incidence is modeled [13].

4.1 Feature Extraction
The feature that we propose to use is the frequency-dependent
absorption coefficient αb . As already stated above, in Section 2.2,
we observe αb in the six octave bands between 125Hz and 4 kHz.
Therefore, the space under investigation is six dimensional.

To calculate the αb,k s, the k-th reflection hk,i, j (n) has to be
segmented from ri, j (n). As it was also done in [41], these segments
were obtained by applying a Hamming windoww(n), of lengthW ,
centered at the reflection time of arrival nk,i, j :

hk,i, j (n) = ri, j (n) ·w(n − nk,i, j ). (4)

The same process is applied to the direct sound, to obtain h0,i, j (n).
Both the direct sound (i.e. k = 0) and the k-th reflection seg-

ments are transformed into the frequency domain as Hk,i, j (ω) =
F {hk,i, j (n)}, where F {·} represents the discrete time Fourier

https://theta360.com/en/
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Figure 5: 2D visualization of the six-dimensional absorp-
tion coefficient data obtained from recorded RIR samples.
The dimensionality reduction was performed by using the
t-distributed Stochastic Neighbor Embedding.

transform operator. The complex frequency-dependent reflection
factor of the k-th reflector can be then calculated as:

R(ω) =
Hk,i, j (ω)

H0,i, j (ω)
· Kair(ω) · Kdir(ω). (5)

Kair(ω) ∈ R and Kdir(ω) ∈ R are frequency-dependent coefficients
that compensate our model of R(ω) to take into account of the
air absorption and loudspeaker directivity, respectively. Kair(ω)
is obtained from the frequency-dependent sound absorption in
air2 reported in [33]. Kdir(ω) can be obtained by looking at the
directivity characteristics on the employed loudspeaker datasheet.

The frequency-dependent absorption coefficient can be calcu-
lated similar to Equation 3. To generalize the model, and remove any
assumption regarding the microphone and source positions with
respect to the reflector, the angle of incidence θ has to be included.
Hence, the angle-independent absorption coefficient is [38]:

α(ω,θ ) = (1 − |R(ω)|2) · sinθ . (6)

The absorption coefficients used as features for classification are
calculated by averaging α(ω,θ ) within each frequency band as:

αb =
1
Bb

Ωb+
Bb
2∑

ω=Ωb−
Bb
2

α(ω,θ ), (7)

where Ωb is the central frequency of the b-th octave band and Bb is
the b-th octave band size. Features extracted from recorded RIRs are
shown in Figure 5. There, for visualization purposes, dimensionality
reduction was applied to the six-dimensional data by using the t-
distributed Stochastic Neighbor Embedding [54].

4.2 Classification
This is, to our knowledge, the first attempt to perform a classifica-
tion of room boundary materials given common acoustic signals,
such as RIRs. We propose to use a well-known, simple and effective
classification algorithm, based on kNN [6]. However, data esti-
mated by the feature extraction method proposed in Section 4.1
may present some outlying samples. Hence, to reduce their con-
tribution to the classification result, we propose to employ the
distance weighted kNN (WKNN) [15].
2It is selected a standard temperature of 20 ◦C and humidity of 50%.

WKNN is a classification algorithm that implements a vote
among neighbors, within a given distance dMAX from the test sam-
ple. Closer neighbors will have a greater influence than neighbors
which are further away. A weight дt attributed to the t-th nearest
neighbor can be defined by looking at its Euclidean distance dt
from the test sample as [15]:

дt =
1
dt
, dt , 0. (8)

dt = | |z − xt | |, where z is the test sample’s position, xt the t-th
neighbor’s position, and | | · | | is the ℓ2 norm operator. To improve
the algorithm efficiency, k-dimensional trees are created during the
training session [18]. These trees are data structures for organizing
points in space, and are used to find the nearest neighbors, by calcu-
lating their dt s. Being T the set of nearest neightbors, classification
can be performed as [20]:

y′ = argmax
y

∑
(xt ,yt )∈T

дt · δ (y = yt ), (9)

where y is the label related to x , and δ (y = yt ), the Dirac delta
function, takes a value of one if y = yt and zero otherwise.

5 EXPERIMENTS AND RESULTS
Experimentswere run to evaluate the proposed audio-visualmethod.
These experiments had as main applications AR and VR. For this
reason, the reflector being analyzed to classify its material is always
the one closest to the listening position. In fact, we aim to improve
the quality of synthesized early reflections, and the first one is,
perceptually, the most important one [3].

5.1 Datasets
Audio-visual data was captured in five rooms, having different sizes
and reverberation times (RT60s). This data was used to estimate
the room boundary and related materials.

5.1.1 Audio-Visual Datasets. RIRs were recorded in five rooms.
Depending on the availability during the recording session, we
employed either a bi-circular array of microphones [41] or a Sound-
field microphone [11]. The bi-circular array circles have radii 85 cm
and 106 cm and are composed of 24 omnidirectional microphones
each. For the Soundfield microphone, only the W-omni channel
is selected for our purposes. Two 360◦ cameras were, separately,
placed at the same position of the microphone array.

The room dimensions are reported in Table 1 (right side). The
acoustic properties, such as the RT60s averaged between 125 Hz
and 4 kHz, the analyzed reflector materials, and the loudspeaker
and microphone positions, are reported on the left side of Table 1.
The first room, named as “LR”, is a listening environment at the BBC
MediaCity, in Salford, UK, where we used the bi-circular array of
microphones [28]. The same microphone array was also employed
within the second room, named as “UL” [28], that is a lab at the BBC
MediaCity. There, to evaluate two reflectors, two microphone array
and loudspeaker positions were recorded. “ST” is a large recording
studio at the University of Surrey [12]. Also in ST the bi-circular
array was used for the recordings. The fourth dataset is a meeting
room “MR” at the University of Surrey, where the bi-circular array
was employed to record the RIRs. The last dataset is “CY”. It is a



Audio-Visual Room Boundary Estimation and Material Recognition AVSU’18, October 26, 2018, Seoul, Republic of Korea

Table 1: Acoustic properties of the rooms (left) and evaluation of layout estimation (right).

Data RT60 (ms) Material GT Loudsp. pos. (m) Mic. pos. (m) Ground-truth (m3) Estimated (m3) Vol. err. (%)
MR 270 Acoustic Tile [2.12, 0.33, 1.00] [3.31, 0.21, 1.50] 5.61×4.28×2.33 5.52×4.35×2.36 1.3

UL 275 Wood
Curtains

[4.79, 2.76, 1.07]
[1.81, 4.66, 1.07]

[2.52, 2.73, 1.07]
[2.62, 3.92, 1.07] 5.57×5.20×2.91 5.92×4.95×2.95 27.0

LR 222 Carpet [2.81, 0.56, 1.08] [2.81, 2.55, 1.08] 5.64×5.05×2.90 5.77×5.17×2.98 7.6
ST 913 Wood [7.12, 12.14, 1.50] [7.12, 10.14, 1.50] 17.08×14.55×6.50 16.53×14.87×5.70 13.2
CY 688 Concrete [5.42, 14.99, 1.69] [3.35, 12.63, 1.70] 10.10×19.0× – 9.61×18.51× – 7.3
AVG – – – – – – 11.3

Table 2: Classification precision for each dataset.

Data MR UL LR ST CY AVG
Precision 62 % 54% 85% 98% 100% 80%

courtyard placed within the Center for Vision, Speech and Signal
Processing, at the University of Surrey. This is a peculiar dataset,
different from the others since it does not have any ceiling. Here,
the Soundfield microphone was used.

RIRs were recorded by employing the swept-sine method [16]:
the five rooms were excited through a 10 s swept-sine signal be-
tween 20Hz and 24 kHz, with a sampling frequency of 48 kHz, and
the recorded signals were then deconvolved to obtain RIRs. To
perform this kind of measurements the background noise level
was always kept 30 dB below the produced sound’s. From the RIRs
recorded at each omnidirectional microphone available, by using a
single loudspeaker position, the first arriving reflection is processed
by our feature extraction method, as described in Section 4.1 (i.e.
we have one test sample for each omnidirectional microphone avail-
able during the recording sessions). The obtained samples were
then used as test data for the classification algorithm in Section 4.2.

5.1.2 Training Dataset. The training dataset for classification
was created by combining two types of data. The first one is com-
posed of about 250 samples. It was obtained by selecting the ab-
sorption coefficients of materials provided in the literature [13, 55].
These were calculated by employing traditional controlled exper-
iments, e.g. by using a reflective tube within an anechoic cham-
ber [13]. However, in our proposed method, we follow a more
generalizable approach: we calculate the new samples’ absorption
coefficients from recorded RIRs, by using the proposed method
in Section 4.1. Thus, there is need for enriching the training data
with samples calculated with the same procedure. Therefore, we
recorded RIRs in a small room, at the University of Surrey, originally
built as RF anechoic chamber. There, different material samples
were acoustically excited, separately, to record their reflections.
Then, we applied the proposed feature extraction method.

The classes represented in the whole training dataset are: “Cur-
tains”, “Wood”, “Concrete”, “Plasterboard”, “Glass”, “Acoustic Tile”,
“Mineral Wool”, “Linoleoum”, and “Carpet”. They were defined by
fusing together those sets of similar materials that are available in
the Google VR SDK to synthesize sound [19] (e.g. different type
of concrete in [19] are considered here as part of the general class
“concrete”). However, the five rooms, that we employed for test-
ing, contained a limited number of materials, that did not span

Figure 6: Normalized Confusion Matrix.

the whole range of classes available in the training dataset that
we generated. Therefore, five are the classes tested in this paper:
“Carpet”, “Concrete”, “Wood”, “Acoustic Tile”, and “Curtains”.

5.2 Classification Evaluation Metrics
The material classification is evaluated by calculating [48]:

Precision =
TP

TP + FP
, (10)

where TP stands for true positives and FP for false positives. This
is calculated for each dataset and reported in percentage. Further-
more, we evaluate the algorithm accuracy in recognizing different
materials by calculating a confusion matrix C . This is constructed
such that Cl,p is equal to the number of observations known to
be in group l but predicted to be in group p. Since the number of
tested samples is unbalanced, we report the normalized confusion
matrix, calculated by looking at the class support size [40].

5.3 Geometry Estimation Result
The right side of Table 1 shows the ground-truth and estimated
dimensions with volume error against the ground-truth for the test
scenes. The estimated room dimensions of MR, LR and CY are very
close to the ground-truth (less than 10%) due to sufficient features
in the scene. UL shows large errors because of depth estimation
error on the featureless dark wall behind the TV and transparent
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(a) (b) (c) (d) (e)

Figure 7: Estimated room layouts with material estimated for the main acoustic reflectors. (a) represents MR, with the ceiling
being classified as Acoustic Tile; (b) is UL, with a wall classified as carpet, and a table as wooden; (c) is LR, with the floor being
recognized as made of carpet; (d) is ST, with the floor classified as wooden; (e) is CY, with the floor material estimated to be
concrete and the ceiling labeled in dark violet because missing (i.e. the courtyard is open air).

windows. In the ST scene, the height of the space was incorrectly
estimated due to the rails on the ceiling and saturated lights. CY
does not have ceiling and the error relates to the area of side walls.

5.4 Classification Results
Results, related to the proposed classification method, are reported
in Table 2. This table highlights the high performance of our pro-
posed method, with a precision, averaged over the five datasets,
that is 80 %. This precision percentage is better than the one that
can be achieved by using vision-based material recognition meth-
ods. Considering cross-dataset experiments, in fact, they usually
provide an accuracy of about 40 % [4]. Our method works perfectly
in CY and has a precision of 98 % in ST. In LR, it provides good
performance, with a precision that is more than 80 %. However, the
proposed method faces some issues in MR and UL, with a precision
of 62 % and 54 %, respectively. These two rooms are the only rooms,
among the tested ones, being furnished. They were both set up to
reproduce living room-like environments. This generates scattered
energy that interferes with the analyzed reflections. Furthermore,
in both these rooms, the microphone array was placed next to sofas.

By looking, at Figure 6, we can then analyze the proposedmethod
from the performance in classifying materials. In general, perfor-
mance is high, with carpet (i.e. in LR), concrete (i.e. in CY) and
wood (i.e. in ST and UL) estimated with a precision always above
85 %. However, acoustic tile, that was the ceiling material in MR, is
recognized with lower precision. This is due to the reasons already
discussed, related to the microphone array being placed next to a
sofa, which generates scattered energy. It is interesting, finally, to
note the recognition accuracy of curtains. Although the precision it
is reported to be pretty low (i.e. slightly above 20 %), the proposed
method mainly confuses these samples for carpet ones. This is
understandable, since carpet and curtains have similar absorption
coefficients [13] (see also Figure 3). This issue could be addressed
in future work, by adding, some priors to strengthen the model. For
instance, it could be assumed that carpets are found on the floor,
whereas curtains are typically parallel to the walls.

5.5 Discussion
Some of the main areas of application for the proposed audio-visual
method are VR and AR. For the first time in the literature, we

propose a method to determine the material of the acoustic reflec-
tor that is closest to the listening position. To do so, we do not
aim to calculate the exact value of its absorption coefficient. In-
stead, we aim to estimate it accurately enough to match with the
respective absorption coefficient value, measured in controlled envi-
ronments [13, 55]. This material classification allows a perceptually
plausible synthesis of the most salient early reflection. Nevertheless,
in the future, it could be extended to every reflector in the room,
enabling appropriate synthesis of the late reverberation.

Results related to the proposed audio-visual method, to recon-
struct the room layout and labeling the main reflector material, are
graphically visualized in Figure 7. There, the material that has been
classified with the highest probability is used to color the acous-
tic reflector, that was localized by using the vision-based method.
To partially overcome the lack of materials available in the tested
rooms, in UL (i.e. Figure 7(b)), two reflectors were classified, by
using two microphones and two loudspeakers. In this way, we have
been able to include in the analysis an additional class, i.e. “cur-
tains”. However, as already discussed, the classification algorithm
confuses it for a carpet. The second material in UL referred to a
tea table, and the classification algorithm correctly labeled it as
“wood”. The other rooms’ reflectors are all correctly classified: LR’s
floor (Figure 7(c)) is classified as carpet; MR’s ceiling is classified as
Acoustic Tile (Figure 7(a)); ST’s floor is estimated as being wooden
(Figure 7(d)); and CY’s floor is classified as concrete (Figure 7(e)).

6 CONCLUSIONS
A novel audio-visual pipeline, that locates and classifies the mate-
rials of acoustic reflectors, has been proposed. Experiments were
performed on five rooms, showing the 80 % precision of the novel
material classification algorithm and the importance of its integra-
tion within the vision-based room reconstruction method.

Future work may look at improving both the feature extraction,
perhaps by looking at using the angle of incidence information. In
addition, the core of the classification algorithm may be improved.
Moreover, The method may be extended to recognize materials
of other reflectors in the room. Furthermore, the reconstructed
geometry may be applied to VR toolkits to produce synthetic spatial
sound. The test dataset will be also enlarged by adding new rooms,
to increase the number of tested materials.
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